Powerful new photodetector can enable optoelectronics advances

// Electrical & Computer Engineering

Tags: Faculty, research

Shrinking photodetectors like this scant wafer held in a frame for testing in the laboratory of UW–Madison engineering Professor Zhenqiang (Jack) Ma help make consumer electronics smaller. Credit: Stephanie Precourt.

Share this story:

In today’s increasingly powerful electronics, tiny materials are a must as manufacturers seek to increase performance without adding bulk.

Smaller also is better for optoelectronic devices—like camera sensors or solar cells—which collect light and convert it to electrical energy. Think, for example, about reducing the size and weight of a series of solar panels, producing a higher-quality photo in low lighting conditions, or even transmitting data more quickly.

However, two major challenges have stood in the way: First, shrinking the size of conventionally used “amorphous” thin-film materials also reduces their quality. And second, when ultrathin materials become too thin, they are almost transparent—and actually lose some ability to gather or absorb light.

UW-Madison electrical and computer engineering PhD student Zhenyang Xia holds a dish that contains photodetector samples. The sample colors vary depending on how they are tuned to absorb a specific light wavelength. Credit: Stephanie Precourt

Now, in a nanoscale photodetector that combines both a unique fabrication method and light-trapping structures, a team of engineers from the University of Wisconsin-Madison and the University at Buffalo has overcome both of those obstacles. The researchers—electrical engineers Zhenqiang (Jack) Ma and Zongfu Yu at UW-Madison and Qiaoqiang Gan at the University of Buffalo—described their device, a single-crystalline germanium nanomembrane photodetector on a nanocavity substrate, in the July 7, 2017, issue of the journal Science Advances.

“The idea, basically, is you want to use a very thin material to realize the same function of devices in which you need to use a very thick material,” says Jack Ma, the Lynn H. Matthias Professor and Vilas Distinguished Achievement Professor in electrical and computer engineering at UW-Madison.

The device consists of nanocavities sandwiched between a top layer of ultrathin single-crystal germanium and a bottom, reflecting layer of silver. “Because of the nanocavities, the photons are ‘recycled’ so light absorption is substantially increased—even in very thin layers of material,” says Ma.

Nanocavities are made up of an orderly series of tiny, interconnected molecules that essentially reflect, or circulate, light. Gan, an associate professor in electrical engineering at the University of Buffalo, already has shown that his nanocavity structures increase the amount of light that thin semiconducting materials like germanium can absorb.

However, most germanium thin films begin as germanium in its amorphous form—meaning that the material’s atomic arrangement lacks the regular, repeating order of a crystal. That also means that its quality isn’t sufficient for increasingly smaller optoelectronics applications.

Tuned to absorb specific light wavelengths, the new photodetector consists of nanocavities sandwiched between a ultrathin single-crystal germanium top layer and reflective silver on the bottom. Credit: Illustration by Zhenyang Xia/UW-Madison College of Engineering

That’s where Ma’s expertise comes into play. A world expert in semiconductor nanomembrane devices, Ma used a revolutionary membrane-transfer technology that allows him to easily integrate single crystalline semiconducting materials onto a substrate. The result is a very thin, yet very effective light-absorbing photodetector—a building block for the future of optoelectronics. “It is an enabling technology that allows you to look at a wide variety of optoelectronics that can go to even smaller footprints, smaller sizes,” says Yu, who conducted its computational analysis.

While the researchers demonstrated their advance using a germanium semiconductor, they also can apply their method to other semiconductors. “And importantly, by tuning the nanocavity, we can control what wavelength we actually absorb,” says Gan. “This will open the way to develop lots of different optoelectronic devices.”

The researchers are applying jointly for a patent on the technology through the Wisconsin Alumni Research Foundation. Other authors on the paper include Zhenyang Xia, Munho Kim, Ming Zhou, Tzu-Hsuan Chang, Dong Liu, Xin Yin, Kanglin Xiong, Hongyi Mi and Xudong Wang of UW-Madison; Haomin Song, of the University of Buffalo; and Fengnian Xia of Yale University.

This research was partially supported by National Science Foundation (grant no. ECCS1507312 and CMMI1562057). M.Z. and Z.Y. were supported by National Science Foundation (NSF) (grant no. ECCS 1405201, ECCS 1641006). Z.X., M.K., T.H.C., D.L, K.X., H.M. and Z.M. were supported by AFOSR under a PECASE grant no. FA9550-09-1-0482 and partly by DoE NNSA program under grant no. DE-NA0002915.

Author: Renee Meiller