Master of Science, Machine Learning and Signal Processing

The Signal Processing and Machine Learning MS program educates students in the foundations of data science theory and methods. Graduates of this program will be poised to immediately participate in data analysis tasks in a variety of application domains using tools based in linear algebra, statistics, and optimization. The coursework includes a summer practicum that gives students hands-on experience with real-world datasets.

Is This Program Right For You?

The Machine Learning and Signal Processing (MLSP) program is intended for students looking for a jump-start on a career in data science, with a passion for quantitative thinking, practical problem solving, computer programming, and applications to a variety of domains. It is designed for motivated students ready for the rigors of a 12-month accelerated program.

The required coursework draws upon both classical and modern methods in MLSP, and is taught by faculty conducting cutting-edge MLSP research. Successful students will have some experience with linear algebra, statistics, and computer programming. The combined focus on the mathematical foundations of data science and their practical application to real-world problems will prepare graduates to be ready to immediately contribute in a variety of different MLSP jobs.

The focus of the MLSP program differs from the standard research-based MS program by the replacing the independent research that leads to a written thesis with an accelerated coursework plan, the summer practicum, and a focus on courses in the MLSP area. If you are interested in research and advanced concept development, you are better served pursuing a research-focused MS program. If you want to complete your degree in 12 months and be part of data science in the work force, then the MLSP program is right for you.

What You Learn

  • Demonstrate a strong understanding of mathematical, scientific, and engineering principles in the MLSP field
  • Demonstrate an ability to formulate, analyze, and independently solve advanced MLSP problems
  • Apply the relevant scientific and technological advancements, techniques, and engineering tools to address these problems
  • Recognize and apply principles of ethical and professional conduct

At A Glance

DeliveryIn class instruction
Credits30 graduate credits
Time Frame1 year - Completion of program to be done within 1 calendar year starting Fall semester only
TuitionResident: $5,994/semester + $2,986 for 6 summer credits (Fall 2017 information)
Nonresident: $12,658/semester + $6,318 for 6 summer credits (Fall 2017 information)
Degree Conferred Master of Science in Electrical Engineering
Offered ByThe UW-Madison College of Engineering
Application DeadlinesFall 2018: January 1, 2018

Degree & Prospective Student Information

  • 30 credit degree program; may transfer up to 6 credits of prior graduate coursework if applicant has previous MS degree from institution other than UW-Madison with approval by department advisor
  • UW-Madison students completing their Bachelor’s degree in the Electrical & Computer Engineering department at UW-Madison may count up to 6 credits of coursework numbered 300 and above towards degree with prior program approval
  • Half of degree coursework (15 out of 30 total credits) must be graduate coursework. Must maintain 3.00 GPA to remain in program. Students must earn a B or above in all core curriculum coursework. With program approval, students are allowed to count no more than 9 credits of graduate course work from other institutions. Course work earned five or more years prior to admission to a master’s degree is not allowed to satisfy requirements.
  • Completion of program to be done within 1 calendar year (Starting Fall semester only)

Applicants must first meet all of the requirements of the Graduate School.
Please visit for details.

Applicants must also meet department specific requirements as outlined below:

  • Must have a bachelor’s degree or expect to earn a bachelor’s degree before their first semester in the program
  • Submit a Statement of Purpose


  • Submit 3 letters of recommendation
  • Non-native English speakers must have a Test of English as a Foreign Language (TOEFL) with a minimum score of 580 (written), 243 computer-based test), or 90 (Internet version).
  • Scores from one these exams are required unless you met one of the following exemptions:
    • English is the exclusive language of instruction at the undergraduate level
    • You earned a degree from a regionally accredited U.S. college or university not more than 5 years prior to the anticipated semester of enrollment
    • You completed at least two full-time semesters of graded course work (excluding ESL courses) at an institution where English is the exclusive language of instruction, not more than 5 years prior to the anticipated semester of enrollment


Apply now or program website

Information for Current Students

Click HERE to view or download the most current ECE Graduate Student Handbook.

Click here to be directed to Graduate School information.

Fall Semester (14 credits) – choose at the minimum four courses from the list below

  • ECE 431 (3 credits): Digital Signal Processing
  • ECE 436 (3 credits): Communication Systems
  • ECE 524 (3 credits): Introduction to Optimization
  • ECE 532 (3 credits): Theory and Applications of Pattern Recognition
  • ECE 533 (3 credits): Image Processing
  • ECE 539 (3 credits): Introduction to Artificial Neural Network and Fuzzy Systems
  • ECE 717 (3 credits): Linear Systems
  • ECE 729 (3 credits): Theory of Information Processing and Transmission
  • ECE 730 (3 credits): Modern Probability Theory and Stochastic Processes
  • ECE 901 (3 credits): Special Topics (if approved by program director/advisor)
  • EPD 611/612 (3 credits): Technical Project Management


Spring Semester (13 credits) – choose at the minimum four courses from the list below

  • ECE 437 (3 credits): Communication Systems II
  • ECE 524 (3 credits): Introduction to Optimization
  • ECE 719 (3 credits): Optimal Systems
  • ECE 735 (3 credits): Signal Synthesis and Recovery Techniques
  • ECE 736 (3 credits): Wireless Communications
  • ECE 738 (3 credits): Advanced Digital Image Processing
  • ECE 761 (3 credits): Advanced Machine Learning
  • ECE 830 (3 credits): Estimation and Decision Theory
  • ECE 901 (3 credits): Special Topics (if approved by director/advisor)
  • EPD 617 (3 credits): Communication Technical Information

Summer (3 credits)

  • ECE 697 (3 credits): Directed Project in Signal Processing and Machine Learning

Please DO NOT mail any paper copies of application materials. They will not be reviewed. Please only upload the required application materials with the Graduate School application. This includes official transcripts. If an applicant is admitted by the ECE Admissions Committee, they will receive further instructions from the ECE Graduate Admissions Office.

Applicants should monitor your application status by visiting the “Graduate Application Status” window within your MyUW portal (information on this is received after submitting an application). You may need to activate a NetID to gain access to the MyUW portal.

We anticipate most decisions will be made by mid-March for Fall semester applications. Applicants will receive an e-mail from the ECE Graduate Admissions Office with the Admissions Committee’s decision as soon as the office receives it.

Further questions related to the ECE admissions process may be directed to