In the face of critical budget cuts, many public school districts are looking to reduce transportation expenditures and keep cuts away from the classroom. Our research team at Northwestern University has been exploring such challenges in partnership with Evanston / Skokie District 65, a pre K-8 public school district north of Chicago. In this talk, I will provide a broad overview of the partnership and present our initial work on the School Bus Routing Problem (SBRP). The SBRP has been studied by the operations research community for more than 50 years, identifying creative routing and scheduling approaches for school districts. The SBRP itself is a composite of five decision sub-problems: data preparation, bus stop selection, bus route generation, school bell time adjustment, and route scheduling. As a first step toward a comprehensive solution approach, we introduce the covering path problem on a grid (CPPG) which finds a cost-minimizing path connecting a subset of points in a grid such that each point is within a predetermined distance of a point from the chosen subset. We leverage the geometric properties of the grid graph which captures the road network structure in many transportation problems, including our motivating setting of school bus routing. With this network structure, we are able to develop efficient methods to find feasible, high quality solution paths for the CPPG. Our results for the stylized grid setting establish important building blocks for more general settings.