SEMINAR NOTICE
Monday, March 5, 2018
4:00 – 5:00pm, RM 1610 EH

Professor Peter Ma
Unipolar CMOS Logic and Ferroelectric Memory:
Two Emerging Technologies that Help to Defy the Demise of
Moore’s Law
Raymond J. Wean Professor
Department of Electrical Engineering
Yale University

Abstract - It is widely accepted that the traditional Moore’s Law based on scaling is about to run its course, although there is
unwavering incentive to maintain the benefits of the Moore’s Law in terms of improved performance and power consumption, as well
as reduced cost. This talk will introduce two emerging technologies, of which one is named the Unipolar CMOS Logic technology
while the other is named the 1-T Ferroelectric Memory technology. Both promise to maintain the performance/power/cost advances
that one might expect from extrapolation of the Moore’s Law without further scaling.

Both of the aforementioned technologies benefit from the emergence of novel materials that possess the enabling electronic
properties. More specifically, the Unipolar CMOS Logic technology is designed to benefit the use of emerging transistor materials,
such as III-V and 2D semiconductors that are difficult (if not impossible) to fabricate conventional CMOS IC’s with matching P- and
N-channel transistors on the same substrate. This is because the Unipolar CMOS technology requires only P or N-channel transistors
to realize CMOS-like logic functions without sacrificing the standby power. Meanwhile, the 1-T Ferroelectric Memory technology is
enabled by the emergence of the HfO2-based ferroelectric gate stack engineered on top of a transistor channel to form the single-
transistor memory cell that can behave either as DRAM or as Flash, depending on the programming strength. Compared to DRAM,
the 1T Ferroelectric memory has the advantage of orders of magnitude longer retention and astonishingly lower power consumption,
while compared to Flash, it operates at strikingly higher write/erase speed with much lower power consumption. The most intriguing
feature of the 1-T Ferroelectric Memory is the possibility of realizing the so-called “Versatile Memory” that can be programmed to
emulate DRAM, Flash, or anything in between simply by tailoring the programming strength. Some relevant experimental results will
be presented along with some key simulation results.

Biography - T. P. Ma is Raymond J. Wean Chair Professor of Electrical Engineering at Yale University, where he has been a faculty
member since 1977. He has served as a Co-Director of Yale Center for Microelectronics, and a Co-Director of the Yale-Peking Joint
Center for Microelectronics and Nanotechnology. He was Chairman of the Department of Electrical Engineering at Yale University

He is a member of the National Academy of Engineering (NAE) in USA, a foreign member of the Chinese Academy of Sciences, an
Academician of the Academia Sinica in Taiwan, and a Life Fellow of the Institute for Electrical and Electronic Engineering (IEEE).

In 1974 he graduated from Yale University with a Ph.D. degree in Engineering and Applied Science before joining IBM, where he did
research work on advanced silicon device technology and ionizing radiation effects in MOS devices before he returned to Yale
University as a faculty member in 1977.

His research and teaching at Yale have focused on semiconductors, MOS interface physics, ionizing radiation and hot electron effects,
advanced gate dielectrics (including high-k gate dielectrics), flash memory device technology, ferroelectric memory technology, and
unipolar CMOS technology.

He received an Honorary Doctor’s Degree from the National Chiao Tung University, Taiwan, ROC in 2016, the 2015 Yale Science
and Engineering Award, the 2014 Outstanding Alumnus Award from National Taiwan University, the 2008 Connecticut Medal of
Technology, the 2006 SIA (Semiconductor Industry Association) University Researcher Award, the 2005 IEEE Andrew S. Grove
Award, a 2005 Pan Wen-Yuan Research Award, a 1998 IEEE EDS Paul Rappaport Award, and the 1991 Connecticut Yankee
Ingenuity Award.

He is an Honorary Professor at the Chinese Academy of Sciences, Tianjin University, and National Chiao Tung University, and an
Honorary Guest Professor at Peking University, and Tsinghua University.