Among an ocean of materials possibilities, hidden treasure could make more powerful electron beams

// Electrical & Computer Engineering, Materials Science & Engineering

Tags: cathode ray tubes, communications, DARPA, Electrical and computer engineering, high throughput computing, Materials Science and Engineering, microwaves, perovskites

Share this story:

Devices using intense focused beams of electrons provide behind-the-scenes power for multiple essential modern technologies like microwave ovens and x-ray machines.

The materials that go into these devices have remained largely unchanged throughout many decades, but electrical and materials engineers at the University of Wisconsin-Madison recently identified a substance that could vastly improve the technology.

This new material, a member of a broad class of compounds called perovskites—which are made up of two different metal atoms combined with three oxygen atoms—could boost the output power of the electron beam and thus enable long-range communications or remote sensing for a fraction of the current energy costs.

With a 4-year, $1.3 million grant, the Defense Advanced Research Project Agency (DARPA) is funding their research, which aims to synthesize the material at large scales and further study its properties, as well as search for even more promising systems.

Illustration showing the interior of a cathode-ray tube for use in an oscilloscope. The electron beam (#3) emanates from a source material (#3) heated to high temperature.
Illustration showing the interior of a cathode-ray tube for use in an oscilloscope. The electron beam (#3) emanates from a source material (#3) heated to high temperature.
Photo: Wikimedia commons

Devices that are the focus application for this new material exploit useful energy from streams of electrons flying through a vacuum, and therefore are called vacuum electronic devices. Vacuum electronic devices put electron energy to work for a broad array of functions, from accelerating particles in research reactors to detecting distant objects using radar or communicating with interstellar probes cruising past Pluto.

“Any time you need to efficiently extract energy from an electron stream with a small, compact device, then a vacuum electronic device is your best bet,” says John Booske, the Vilas Distinguished Achievement Professor in electrical and computer engineering at UW-Madison and one of the principal investigators on the project.

Because electrons traversing sealed vacuums encounter almost no resistance, vacuum electronic devices are remarkably efficient; for example, using your microwave to zap  frozen burritos harnesses almost 90 percent of the initial energy.

The charged beams that drive these devices emanate from sources called cathodes. Most cathodes are made from metals that emit electrons from their surface when heated to high temperature. More emission means a stronger electron beam.

But, most metals don’t spew significant amounts of electrons from their surfaces, even at 1,000 degrees Celsius. “The power per unit volume you need out of a satellite transmitter is huge,” says Booske. “However, the size and power budget are both limited because payload is very expensive in a rocket, and you can only harness a meager amount of energy from the sun.”

To get more electronic bang for the input power buck, Booske, in collaboration with Dane Morgan, the Harvey D. Spangler Professor in materials science and engineering at UW-Madison, set out to identify new materials that could act as electron sources.

Currently, most vacuum electronic devices generate beams by heating up tungsten metal to high temperatures—like the filaments in incandescent light bulbs. That familiar glow actually represents counterproductive energy loss for the purposes of an electron beam, so tungsten cathodes typically receive a thin coating of barium oxide, which encourages them to let electrons fly rather than simply light up. Because barium oxide is volatile, that coating boils off of the surface at high temperatures, degrading the cathode over time.

Some alternative cathode materials have emerged over recent decades, but none have reliably outperformed existing technologies. The trial-and-error process of identifying and characterizing candidates from among the vast array of possible combinations between elements on the periodic table is akin to picking out a single needle from an enormous haystack.

Booske, Morgan and their student Ryan Jacobs found a needle.

“With a well-proven computational technique, we’ve identified a material that, on paper, looks like the first promising prospect that could be better than the state-of-the-art cathodes,” says Booske.

Using a fundamental technique called density functional theory, the researchers solved quantum mechanical equations which control the atomic properties of materials. State-of-the-art high throughput computing allowed them to predict the bulk behavior of candidate compounds and rapidly compare between materials.

“Allowing the computer to crunch through the material properties for all different sorts of compounds allowed us to screen and compare among the enormous range of possible perovskites,” says Booske.

This approach—brute-force computational comparison informed by rationally selected parameters—picked out a potential treasure. “While we are excited about our initial success, the results of this first search are really just the tip of the iceberg.” 

“With the understanding we have gained, we can now integrate high-throughput computation and informatics techniques to screen intelligently through thousands of possible materials to find many new promising candidates. This type of computational materials design, driven by leading research universities like UW-Madison, is changing how we discover materials,” says Morgan.

Currently the researchers are developing strategies to produce large amounts of the pure material and further characterize its properties. Jacobs, now a scientist in Booske’s and Morgan’s labs, will lead the efforts. The researchers are working with the Wisconsin Alumni Research Foundation to patent the material.

Author: Sam Million-Weaver