College of Engineering University of Wisconsin-Madison
Decorative header to link to Department of Mechanical Engineering

Graphic of the ME newsletter The Fountain
ME: The Mechanical Engineering Department Newsletter

 

The ME Newsletter
Fall-Winter 2006-2007

Featured articles

Making more functional biopolymers

GOOD SPORTS: Hamstring study may help injured athletes
stay healthy

Metal-embedding method helps tiny sensors function in extreme environments

Two ME faculty receive 2006 College of Engineering Awards

In Memoriam: Professor Emeritus Phil Myers

Two ME alums honored at Engineers' Day


Regular Features

Faculty News

Student News

Alumni News

 

 

 

spacer Homepage for CEE newsletter Button to obtain BACK ISSUES Button to CONTACT US Button to JOIN OUR MAILING LIST Button that connects to UW Foundation page for online giving  
 

GOOD SPORTS:
Hamstring study may help injured athletes stay healthy

A computer model ofthe musculoskeletal mechanics of a sprinter can help identify risk areas.

A computer model of the musculoskeletal mechanics of a sprinter can help identify risk areas. (View larger image)

Decorative initial cap Athletes who strain a hamstring could avoid re-injuring the muscle by participating in targeted physical therapies and improving their running mechanics, according to research led by Associate Professor Darryl Thelen. Hamstring strains occur when muscle fibers tear at the junction of muscle and tendon. Such injuries often occur as athletes sprint during sports like track, soccer, football and baseball.

Most hamstring injuries only temporarily sideline athletes, who undergo rest and therapy while the muscle heals. However, an athlete who’s endured at least one hamstring strain is likely to experience repeat injuries, says Thelen. He’s trying to learn why—and in the process, discover ways athletes might prevent both initial hamstring injuries and re-injuries.

Combining magnetic resonance (MR) imaging, studies of sprinting biomechanics, and computer simulations, Thelen and graduate students Liz Chumanov and Amy Silder are learning more about how hamstring strains heal and why injuries may recur. “We are particularly interested in how the muscle remodels following injury,” says Thelen.

He and the students are working with Orthopedics and Rehabilitation Assistant Professor Brian Heiderscheit, Radiology Professor Mike Tuite and UW Health physical therapist Mark Sherry to study high school athletes who have had one or more hamstring injuries and have been cleared to return to their sport.

Each athlete undergoes an MRI, which helps the researchers quantify how much scar tissue is present at the site of the prior injury. Surprisingly, says Thelen, the MRI results paint very distinct pictures of the injury site—even though the injury occurred months earlier. “We’ve learned that even individuals who are five or six months post-injury often have residual scar tissue at the musculotendon junction, which is the site of prior injury,” he says.

The researchers compare the MR findings with analyses of the athletes in action. In their biomechanics lab, they motion-capture athletes sprinting on a high-speed treadmill. “We can record their whole body motion, and then in the lab we can generate computer models of them sprinting,” says Thelen. “We can actually estimate the muscle mechanics while the individual is sprinting and assess when they’re at risk for injury.”

Scar tissue from a hamstring injury on a left leg appears black on an MRI, even six months after healing.

Scar tissue from a ham-string injury on the left leg appears black on an MRI (circled), even six months after healing.
(View larger image)

 

So far, his team has learned that athletes are most likely to injure a hamstring during the late-swing phase of sprinting, during which both feet are off the ground and the leg is extended. “That’s when the hamstring is loaded and stretched and seems to be most susceptible to injury,” says Thelen.

The researchers’ computer simulations enable them to estimate how much load the hamstrings are under and how much they’re stretched. In animal models, says Thelen, the mechanical strain a muscle is experiencing is a good predictor of injury potential.

Now the researchers can translate what they’ve learned about hamstring muscle mechanics into how best to rehabilitate the muscle after injury. They discovered that exercise programs that strengthen the core muscles—the abs and lower back—are related to fewer hamstring re-injuries. “We’ve been able to show that these muscles actually have a large influence on pelvic orientation, which affects hamstring stretch—which presumably affects injury potential,” says Thelen.

The group now is studying whether mobilizing the hamstring in a controlled way shortly after injury will help the muscle remodel in a way that reduces re-injury risk.

Funded by the NFL Charities and the Aircast Foundation, the group’s studies of how muscles heal after injury also are relevant to other muscles susceptible to injury, as well as tissues cut during surgical procedures, says Thelen.

 


For help with this webpage: webmaster@engr.wisc.edu.

Copyright 2006 The Board of Regents of the University of Wisconsin System

Date last modified: Monday, 27-November-2006 15:43:00 CDT
Date created: 27-November-2006

spacer

 

Graphic of the ME newsletter