College of Engineering University of Wisconsin-Madison
Decorative header to link to Department of Electrical & Computer Engineering

Graphic of the ECE newsletter The Fountain
ECE NEWS :The Electrical & Computer Engineering Department Newsletter

 

Year in Review 2009-2010

Featured Articles

BRIGHT IDEAS: Undergrad competition showcases ECE student ideas and inventions

BRIGHT IDEAS: Recycled electrification system will light up developing nations

New semiconductor laser structure

CAREER Award:
Nam Sung Kim

CAREER Award:
Katherine Compton

Focus on New Faculty:
Nader Behdad

Focus on Alumni:
Meet the ECE Visiting Advisory Board

Dean Foate receives Distinguised Acheivement Award

Andrew Hanson:
Transferring entrepreneurship from classroom to company

Michael Splinter: Blending engineering, business and social responsibility

In Memoriam


Regular Features

Message from the chair

Department News

Student News

 

 

spacer Homepage for ECE newsletter Button to obtain BACK ISSUES Button to CONTACT US Button to JOIN OUR MAILING LIST Button that connects to UW Foundation page for online giving  
 

CAREER AWARD: Katherine Compton

Two ECE faculty members have received prestigious Faculty Early Career Development Awards (CAREER) from the National Science Foundation. These awards, which come with four-year grants of approximately $400,000, recognize faculty members who are at the beginning of their academic careers and have developed creative projects that effectively integrate advanced research and education.



Katherine Compton

Catherine Compton

Boosting computer performances with reconfigurable hardware

Decorative initial cap Assistant Professor Katherine Compton is studying how to use reconfigurable hardware, which is a form of flexible, special-purpose hardware, to implement a wide range of computer accelerators that boost performance and increase energy efficiency.

Compton says the idea of her work is similar to cooking. Chefs can make anything from a cookbook, but they can make a dish much faster if they memorize the recipe. A traditional central processing unit, or CPU, is like a chef with a cookbook; it can process anything, but it’s relatively slow since it processes data sequentially and has to look up the instructions every time, even if it has handled the same task before.

Application-specific integrated circuits, called ASICs, are hard-coded at the factory with a single “memorized” recipe. This hardware is fast because it doesn’t need to look up the instructions, and it processes data in parallel, meaning it handles multiple data threads simultaneously like a graphics processing unit, or GPU.

Reconfigurable hardware is like a super chef who can quickly memorize or re-memorize a small set of recipes. Like ASICs, the hardware memorizes functions and performs computations in parallel.

Reconfigurable hardware goes beyond ASICs by loading sets of data that determine which wires should be connected or disconnected, thereby creating different digital circuits for different tasks. For example, the hardware could load an MP3 encoder accelerator to compress an audio file and then quickly switch to become a decryption accelerator.

Compton’s research focuses on how a computing system determines which accelerators should be loaded into hardware at any given time.

Since first publishing on system-level reconfigurable hardware management in 2005, Compton has studied how to allocate the accelerators in response to, but in isolation of, the rest of the computer system. The CAREER award will allow her to expand her work to study the entire system and schedule multiple computing resources to work in tandem with the reconfigurable hardware.

In terms of the cooking metaphor, she essentially is looking at the entire kitchen workflow to determine how the various chefs—in other words, the CPU, GPU and reconfigurable hardware—can best work together to most efficiently make the dish, or execute an application.

Ultimately, Compton is working to demonstrate to hardware companies that reconfigurable hardware provides enough of a boost to warrant adding it to everyday computing devices.

 





For help with this webpage: webmaster@engr.wisc.edu.

Copyright 2010 The Board of Regents of the University of Wisconsin System

Date last modified: Monday,20-December-2010
Date created: 20-December-2010

spacer

 

Graphic of the ECE newsletter