University of Wisconsin-Madison
Department of Chemical and Biological Engineering

2009 Curriculum Guide for
Chemical Engineering Undergraduates

The following curriculum applies to students admitted to the Chemical Engineering degree classification September 2009 or later.
Chemical Engineering Curriculum

Requirement Summary
Mathematics, 19 cr
Physics, 10 cr
Chemistry, 20 cr
Life Science, 6 cr
Engineering, 48 cr
Communication Skills, 2 cr
Liberal Studies, 16 cr
Free Electives, 6 cr
Professional Breadth, 6 cr
Total Credits: 133

I. Mathematics, 19 cr
 - Math 221 Calculus and Analytic Geometry, 5 cr
 - Math 222 Calculus and Analytic Geometry, 5 cr
 - Math 234 Calculus -- Functions of Several Variables, 3 cr
 - Math 319 Techniques in Ordinary Differential Equations, 3 cr
 or Math 320 Linear Algebra and Differential Equations, 3 cr
 - Statistics 324 Introductory Applied Statistics for Engineers, 3 cr

II. Science, 36 cr
A. Physics, 10 cr
 - Physics 201 or 207 General Physics, 5 cr
 - Physics 202 or 208 General Physics, 5 cr

Transfer students who receive fewer than 6 credits for Physics 201/202 or 207/208 courses must make up the credit shortage with another Physics course.

B. Chemistry, 20 cr
 - Chem 109 General and Analytical Chemistry I, 5 cr
 - Chem 329 Fundamentals of Analytical Science, 4 cr
 - Chem 343 Introductory Organic Chemistry, 3 cr
 - Chem 344 Introductory Organic Chemistry Lab, 2 cr
 - Chem 345 Intermediate Organic Chemistry, 3 cr
 - Chem 562 Physical Chemistry, 3 cr

1 Transfer students must have equivalent math courses to meet the requirement of the three basic calculus courses with at least 12 credits.
2 Meets the Quantitative Reasoning, Part A General Education Requirement.
3 Meets the Quantitative Reasoning, Part B and Natural Science General Education Requirement.
Transfer students whose general chemistry courses do not contain significant analytical chemistry content must take Chemistry 329 (or Chemistry 327). Credit shortages caused by transfer of freshman chemistry courses at fewer than 9 credits must be made up with chemistry, biochemistry or chemical engineering courses.

C. Life Science, 6 cr

Introductory Biology requirement: Zool 153 (3 cr) or Zool 151 (5 cr) or score of 5 on AP Biology Exam

Advanced Biology requirement: Biochem 501 (3 cr) or Biochem 507 (3 cr) or Zool 570 (3 cr) or Gen 466 (3 cr) or Bact 303 (3 cr)

Biocore 301 and 303 may be used to satisfy the Life Science requirements. Students who meet the Introductory Biology requirement with an AP exam are encouraged to take 2 advanced biology electives.

IV. Engineering, 48 cr

CBE 250 Process Synthesis, 3 cr
CBE 255 Introduction to Chemical Process Modeling, 3 cr
CBE 310 Chemical Process Thermodynamics (formerly CBE 211), 3 cr
CBE 311 Thermodynamics of Mixtures, 3 cr
CBE 320 Introductory Transport Phenomena, 4 cr
CBE 324 Transport Phenomena Lab, 3 cr
CBE 326 Momentum and Heat Transfer Operations, 3 cr
CBE 424 Operations and Process Laboratory, 5 cr^4
CBE 426 Mass Transfer Operations, 3 cr
CBE 430 Chemical Kinetics and Reactor Design, 3 cr
Materials Elective (CBE 440 Chemical Engineering Materials, 3 cr or CBE 540 Polymer Science and Technology, 3 cr or CBE 544 Processing of Electronic Materials, 3 cr or CBE 547 Introduction to Colloid and Interface Science, 3 cr)
CBE 450 Process Design, 3 cr
CBE 470 Process Dynamics and Control, 3 cr
CBE Electives, 6 cr

Chemical Engineering electives may be chosen from any of the chemical engineering courses that are not required, with the exception of CBE 425. A maximum of two credits of co-op work (CBE 001) may be used to meet the CBE elective requirement. BSE 542, Food Engineering Operations, and BSE 642, Food & Pharmaceutical Separations, can be taken as CBE elective courses. Qualified undergraduates may take graduate-level (600 or 700) courses to fulfill this requirement.

^4Meets the Communication Skills, Part B General Education Requirement.
Chemical Engineering Curriculum

V. Professional Breadth Requirement, 6 cr

The objective of this requirement is to provide students with skills to interact with professionals from other disciplines. Suitable courses for this requirement include courses in engineering (excluding CBE) and science, as well as a variety of other disciplines. A list of approved courses is available via http://www.engr.wisc.edu/che/current/undergrad/. A recent version of this list is appended.

VI. Communications Skills Requirements 5

For Part A of the General Education Communication Requirement (2 cr) students must select one course with an “a” designation in “g” of the "geBLC" column of the Timetable, such as the following: Ag Journ 100, Comm Arts 100, EPD 155, English 100, ILS 200, or Family Comm 100. English 118 is also approved for those students required to study English as a second language. Some students will be exempt from this requirement based on their placement test scores or advanced placement in English.

VII. Liberal-Studies Requirements, 16 cr 6

1) Liberal-Studies elective courses must be classified as either humanities, social studies or literature courses (identified by the letters H, S, L or Z in “B” of the "geBLC" column of the Timetable). At least 6 credits must have a breadth designation of humanities (H, L or Z), and at least 3 credits must have a designation of social studies (S or Z). Foreign language courses count as H credits.

2) A minimum of 2 courses must be taken from the same department or program. At least 1 of these 2 courses must be at an intermediate or advanced level (indicated by an I, A or D in the “L” of the “geBLC” column of the Timetable).

3) A minimum of 4 credits must be taken outside the field of concentration.

5Meets the Communication Skills Part A and Part B General Education Requirement.

6Meets the Humanities/Literature/Arts and Social Studies General Education Requirement.
4) A 3-credit ethnic-studies course must be selected from the College of Letters and Science. Acceptable courses are identified by the letter "e" in the "eBLC" column of the Timetable. If appropriate, the ethnic-studies course may be among those used to satisfy the concentration requirement.

5) Retroactive credits may be awarded for foreign language work done in high school. The following conditions apply:

 a) A university-level foreign language course must be taken before the student has earned 30 college credits in residence;

 b) A Retroactive Language Credit Request Form must be completed and submitted to the language instructor during the first two weeks of class;

 c) The student must earn a B or better in this course.

Such credits do not count towards the 16 liberal-studies credits required. They may, however, be used to satisfy the concentration and depth requirements stated in Item 2 above and count as degree credits.

6) English composition courses, English as a Second Language courses, and basic Communications Arts courses are not accepted as liberal-studies electives.

VIII. Free Electives, 6 cr

Students who satisfy the Communications Part A requirement by examination will have an additional 2 credits of free electives. Transfer students who receive fewer transfer credits for a required course than are given for the same course on the Madison campus must increase their free elective credits to meet the minimum 133 total credit requirement for the chemical engineering degree.
Prior to admission to a degree-granting program, students must complete several General College Requirements (GCR; see http://studentservices.engr.wisc.edu/current/). As part of the GCR, students must take courses in 5 categories (Communications, Physics, Chemistry, Introduction to Engineering, and Mathematics). While various courses can be selected in these categories, students who wish to be admitted to Chemical Engineering are strongly encouraged to take the specific courses listed in the table below.

<table>
<thead>
<tr>
<th>General College Requirement</th>
<th>Recommended Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Comm A (General Education Requirement)</td>
<td>EPD 155 (2cr)</td>
</tr>
<tr>
<td>2. Physics</td>
<td>Phys 201 (5cr)</td>
</tr>
<tr>
<td>3. Chemistry</td>
<td>Chem 109 (5cr)</td>
</tr>
<tr>
<td>4. Introduction to Engineering</td>
<td>InterEGR 101 (2cr), 102 (2cr) or160 (3cr)</td>
</tr>
<tr>
<td>5. Mathematics</td>
<td>Math 221 (5cr) and Math 222 (5cr)</td>
</tr>
</tbody>
</table>

(1) Any Comm A course may be taken.
(2) EMA 201 (3cr) + EMA 202 (3cr) may be substituted for Phys 201.
(3) Chem 103 (4cr) + Chem 104 (5cr) may be substituted for Chem 109.
(4) InterEGR 101 and 102 can count toward the departmental free elective or liberal elective requirements; InterEGR 160 can count toward the departmental professional breadth requirement. Other Introduction to Engineering courses approved for the GCR (see http://studentservices.engr.wisc.edu/current/) can count toward the free elective requirements.
(5) Math 217 (5cr) may be substituted for Math 221; Math 275 (5cr) + Math 276 (5cr) may be substituted for Math 221 + Math 222.

These recommended courses present the preferred topics at a level suitable for Chemical Engineering students. Other alternatives that satisfy the General College Requirements will be accepted for admission into the Chemical Engineering degree program, but these choices may reduce the number of free electives available in the curriculum.
Recommended Course Sequence (Prerequisites are shown in parentheses)

Freshman year, First semester, 15 credits
Chem 109 General and Analytical Chemistry, 5 cr
Math 221 Calculus and Analytic Geometry, 5 cr
Communications Elective, 2 cr
Liberal Studies Elective, 3 cr

Freshman year, Second Semester, 17 credits
Chem 329 Fundamentals of Analytical Science, 4 cr (Chem 109 or cons inst)
Math 222 Calculus and Analytic Geometry, 5 cr (Math 221)
Physics 201 General Physics, 5 cr (Math 221 or cons inst)
Liberal Studies Elective, 3 cr

Sophomore year, First semester, 17 credits
CBE 250 Process Synthesis, 3 cr (Chem 329 or Chem 343, or con reg)
Chem 343 Introductory Organic Chemistry, 3 cr (Chem 104 or 109)
Math 234 Calculus -- Functions of Several Variables, 3 cr (Math 222)
Physics 202 General Physics, 5 cr (Physics 201 or equiv.)
Zool 153 Introductory Biology, 3 cr (Chem 109)

Sophomore year, Second Semester, 17 credits
CBE 255 Introduction to Chemical Process Modeling, 3 cr (Math 319 or 320 or con reg)
CBE 310 Chemical Process Thermodynamics, 3 cr (Math 234, Physics 201 or equiv; CBE 255 or equiv or con reg; CBE 250 with grade of C or better)
Chem 344 Introductory Organic Chemistry Lab, 2 cr (Chem 341 or 343)
Chem 345 Intermediate Organic Chemistry, 3 cr (Chem 343 with grade of C or better)
Math 319 Techniques in Ordinary Differential Equations. 3cr, (Math 222)
 or Math 320 Linear Algebra and Differential Equations, 3 cr (Math 222)
Stat 324 Intro Applied Statistics for Engineers, 3 cr (Math 222)

Junior year, First semester, 16 credits
CBE 320 Introductory Transport Phenomena, 4 cr (Physics 201, Math 319 or 320, CBE 250 with grade of C or better; or cons inst)
CBE 311 Thermodynamics of Mixtures, 3 cr (CBE 310 with grade of C or better)
Advanced Biology Elective, 3 cr
Liberal Studies Elective, 3 cr
Professional Breadth Elective, 3 cr

Junior year, Second Semester, 16 credits
CBE 324 Transport Phenomena Lab, 3 cr (CBE 310 & 320 or con reg; Stat 324)
CBE 326 Momentum and Heat Transfer Operations, 3 cr (CBE 310 & 320 with grades of C or better)
Chem 562 Physical Chemistry, 3 cr (CBE 310, Physics 202)
Liberal Studies Elective, 4 cr
Professional Breadth Elective, 3 cr
Recommended Course Sequence (Continued)

Senior year, First semester, 15 credits
CBE 426 Mass Transfer Operations, 3 cr (CBE 311 & 320 with grades of C or better)
CBE 430 Chemical Kinetics and Reactor Design, 3 cr (CBE 311 & 320 or cons inst.)
CBE 440 Chemical Engineering Materials, 3 cr (Chem 345)
 or CBE 540 Polymer Science and Technology, 3cr (Chem 345; CBE 326 & 430, or con reg; Stat 324; or cons inst)
 or CBE 544 Processing of Electronic Materials, 3 cr (CBE 440 or MS&E 351 or ECE 335; or cons inst)
 or CBE 547 Introduction to Colloid and Interface Science, 3r (Chem 561 or 562 or equiv, or cons inst)
CBE Elective, 3 cr
Liberal Studies Elective, 3 cr

Senior year, Second Semester, 15 credits
CBE 450 Process Design, 3 cr (CBE 326, 426 & 430 or cons inst)
CBE 470 Process Dynamics and Control, 3 cr (CBE 326; CBE 430 or con reg)
CBE Elective, 3 cr
Free Elective, 6 cr

Senior year, Summer session, 5 credits
CBE 424 Operations and Process Lab, 5 cr (CBE 324, 326, 426 & 430; or cons inst.)
I. Communication Part A

Ag Journ 100, Communication in Agricultural and Life Sciences, Sem. I, II; 3 cr.
Comm Arts 100, Introduction to Speech Composition Sem. I, II; 3 cr.
EPD 155, Basic Communication, Sem. I, II, SS; 2 cr.
English 100, Freshman Composition, Sem. I, II; 3 cr.
English 118, English as a 2nd Language; Composition, Sem I, II, SS; 3 cr.
Fam Com 100, Intro to Communication; Inquiry and Exposition, Sem. I, II, 3 cr.
Integ Lib Std 200, Critical Thinking and Expression, Sem. I; 3 cr.

II. Professional Breadth Elective Courses

For the most up-to-date list of courses, see http://www.engr.wisc.edu/che/current/undergrad/.

A. Courses of level 300 or higher from the following College of Engineering departments and programs may be used:

 Biomedical Engineering
 Civil and Environmental Engineering
 Electrical and Computer Engineering
 Engineering Mechanics and Astronautics
 Engineering Professional Development1
 Geological Engineering
 Industrial Engineering
 Interdisciplinary Courses (Engineering)1
 Materials Science and Engineering2
 Mechanical Engineering
 Nuclear Engineering
 Engineering Physics

B. Biological Systems Engineering - BSE 542, Food Engineering Operations, and BSE 642, Food and Pharmaceutical Separations, may be used.

C. Any course of level 300 or higher from the following departments in the College of Letters and Sciences may be used:

 Chemistry
 Computer Sciences
 Math
 Physics

1 InterEgr 160, and any other course of level 200 or higher.
2 Full degree credit is not allowed if a student takes both CBE 440 and MS&E 350. MS&E 350 will be awarded only 1 degree credit.
D. The following courses may also be used:

Econ 343 Environmental Economics
Envir St 343 Environmental Economics
Envir St/Phil 441 Environmental Ethics
Hist Sci 337 History of Technology
Stat 424 Experimental Design
Biochem 501 Introduction to Biochemistry
or Biochem 507 General Biochemistry
Zool 570 Cell Biology
Gen/Botany/Zool 466 General Genetics
Bact 303 Biology of Microorganisms
Biocore 301 Evolution, Ecology and Genetics
Biocore 303 Cell Biology
Acct IS 300 Accounting Principles
Finance 300 Introduction to Finance

Students may petition the department to allow other courses related to engineering professional practice. To request that a course that is not listed above be used, the student should fill out the Professional Breadth Requirement Course Request form on the following page (also available online via http://www.engr.wisc.edu/che/current/undergrad/) and submit it to his/her advisor. The department will then determine if the course can be counted toward the Professional Breadth Requirement.
Professional Breadth Elective Course Request form

Department:

Course number:

Course title:

Credits:

Prerequisites:

Course catalogue description:

Rationale:

Student’s name: ___

Advisor’s signature: __
Curriculum Specialization for Chemical Engineering

Students wishing to specialize or to prepare for graduate study in technical or nontechnical areas may use electives and the course substitution regulations to achieve a curriculum that will enhance professional development in a particular specialty. Examples for several technical areas are listed below. Students should consult their advisers regarding additional substitutions.

Bioprocess Engineering
CBE 440/540: CBE 540
CBE elective: CBE 560, BSE 542, 642
Free elective: Genetics 466, Food Sci 550

Biomedical and Premedical
CBE 440/540: CBE 540
CBE elective: CBE 560
Breadth elective: BME 315, 401, 410, 430

Environmental Engineering
CBE 440/540: CBE 440
CBE elective: CBE 567, 535
Breadth elective: CEE 320, 326, 521, 522
Free elective: Envir St. 343, Geol 411

Polymers
CBE 440/540: CBE 440
CBE elective: CBE 540, 541, 525
Breadth elective: ME 417, 418

Food Engineering
CBE 440/540: CBE 440
CBE elective: CBE 540, 565
Breadth elective: CEE 521, 320, BSE 642
Free elective: Food Sci 410

Process Systems Engineering
Breadth elective: IE 313, 433, CS 412, 513
Free elective: Math 340, 415

Solid State Materials
CBE 440/540: CBE 440
CBE elective: CBE 544
Breadth elective: MSE 448, 570, ECE 335, 466
Free elective: Physics 531, 551
Appendix A
Course Substitution Regulations

CBE Course Substitution Regulations

1. Any student may, with adviser approval, replace up to 12 credits of required courses in the curriculum (except CBE 424) by an equal number of credits of other courses within the limitations listed under (3).

2. Any student who wishes to amend the curriculum by more than 12 credits or wishes to appeal the adviser’s decision in (1) or to request exception to (3) below must submit a written request to the chairperson of the department, who will bring it to the department faculty for consideration.

3. Restrictions on course substitutions are the following:
 a. Physics courses may be replaced by science or engineering courses;
 b. Chemistry/life science courses must be replaced by courses with significant chemistry/life science content;
 c. Engineering courses must be replaced by engineering courses;
 d. Lab courses must be replaced by an equal number of hours of lab courses;
 e. English 101, English as a second language courses, and Math 112-114 may not be used for course substitutions.

4. A student who wishes to make a course substitution must obtain a Course Substitution Form from room 2035. The form must be signed by the student’s adviser and turned into the Undergraduate Office, Room 2035, for entry into the student's record.
Pass/Fail Regulations applicable to Chemical Engineering undergraduate students:

1. Students in good standing may count toward an undergraduate degree two pass/fail courses. These courses must be liberal or free electives. (See paragraph 13, College of Engineering regulations regarding enrollment, scholarship and graduation for undergraduates, April 1985).

2. Only one “introductory” course taken on a pass/fail basis can be counted toward degree requirements. An introductory course is defined as one which requires only freshman or sophomore standing and no other college level course as a prerequisite.

3. Pass/Fail Requests can be accessed through your Student Center in My UW Madison (http://my.wisc.edu) by clicking on the 'Course Change Request' link via Course Enrollment, Term Information sub tab. Requests should be submitted before the end of the fourth week of classes. The pass/fail election may be withdrawn anytime before the end of the fourth week of classes.

4. A grade of “C” shall be the minimum acceptable for “Pass”. Pass/fail grades are not included in the calculation of the grade point average or the point credit ratio.

5. All students are free at any time to take courses in excess of degree requirements on a pass/fail basis.

Note: Item 2 is a specific regulation of the Department of Chemical and Biological Engineering. All of the remaining items are regulations of the College of Engineering or the University.