College of Engineering University of Wisconsin-Madison
Decorative header to link to Department of Biomedical Engineering

Graphic of the BME newsletter The Fountain
BME MONITOR: The Biomedical Engineering Department Newsletter

 

2007 Newsletter
Featured articles

Experiential learning: BME undergrad design competition stresses real-world challenges

Research may yield improved treatment of diseased lungs

Translational research: Medicine, hand-delivered

Translational research:
Ultrasound waves reflect tissue mechanics

Translational research: 'Balloon' effect:
Blocking aneurysms

Translational research: For ACL repair,
closing the 'gap'

Translational research: Fast, efficient MR imaging

Translational research: Seven new projects launched

Graduate student service award honors Corrine Bahr


Regular Features

Message from the chair

Faculty news:
David Beebe cited as pioneer of miniaturization

In memoriam:
Prof. Paul Bach-y-Rita

spacer Homepage for BME newsletter Button to obtain BACK ISSUES Button to CONTACT US Button to JOIN OUR MAILING LIST Button that connects to UW Foundation page for online giving  
 

Research may yield improved treatment for diseased lungs

Schematic of heart, lungs and arteries

Schematic of heart, lungs and arteries
(View larger image)

Decorative initial cap With a grant of nearly $2 million from the National Institutes of Health National Heart Lung and Blood Institute, a multi-institutional team of biomedical engineers, scientists and clinicians will study large-artery biomechanics that could play a role in heart failure in patients with pulmonary arterial hypertension.

Patients who have the disease may have narrowed, thickened pulmonary arteries in which scar tissue accumulates, blood flow is blocked and tiny blood clots form. There are treatments for pulmonary arterial hypertension; however, there is no cure.

Naomi Chesler
Naomi Chesler
(View larger image)

Led by Assistant Professor Naomi Chesler, the researchers hope to create improved diagnostic tools that enable them to track stiffening of large and small arteries and link these measurements with impaired ventricular function.

Currently, researchers believe pulmonary arterial hypertension is tied mostly to narrowing of the small blood vessels that carry oxygen-poor blood from the right ventricle of the heart to the pulmonary arteries in the lungs. “That reduction in diameter increases resistance, and that increase in resistance overloads the right heart, because it has to produce more pressure,” says Chesler.

But in this process, she says, researchers have downplayed the role of stiffness in the much larger pulmonary arteries, which also contributes to the right heart load.

For example, on the left side of the circulation, where oxygen-rich blood from the lungs flows to the head, limbs and major organs, researchers just recently have begun to understand that the properties of large “conduit” arteries are important to left-ventricle function. “Changes can occur to large vessels that alter the way that pulse waves travel in the circulation and can end up overloading the left ventricle—not by increasing the mean pressure, but by altering the wave patterns,” says Chesler. “So, a goal of this grant is to investigate whether that occurs also on the right side. If it does, it’ll open up all sorts of new treatment possibilities, because we haven’t been treating the large arteries because we haven’t been thinking of them as part of the problem.”

Researchers have measured impedance, which is like resistance but takes into account arterial stiffness, in human pulmonary circulation since the 1960s. But while these measurements show that large-artery stiffening occurs, the data don’t show whether that stiffness affects ventricular function, says Chesler.

She, too, will measure impedance in the pulmonary circulation, focusing specifically on the role of a particular protein, collagen, in arterial stiffening. A key innovation in molecular biology will enable Chesler to use transgenic mice to explore the physical role of collagen-mediated large-artery stiffening in pulmonary arterial hypertension. She will induce large-artery stiffness in the mice in a process that mimics scleroderma, a disease in which the body produces too much collagen, the body’s ubiquitous fibrous structural protein that strengthens blood vessels.

On campus, Chesler’s collaborators include Cardiology Associate Scientist Timothy Hacker, Biostatistics and Medical Informatics Associate Scientist Jens Eickhoff, Medicine Assistant Professors James Runo and Nancy Sweitzer, Radiology and Biomedical Engineering Assistant Professor Scott Reeder, and Medical College of Wisconsin Assistant Professor Robert Molthen.



For help with this webpage: webmaster@engr.wisc.edu.

Copyright 2007 The Board of Regents of the University of Wisconsin System

Date last modified: Monday,30-July-2007 15:43:00 CDT
Date created: 30-July-2007

spacer

 

Graphic of the Biomedical Engineering newsletter